
Introduction to parallel programming using MPI

Jakub Gałecki, j.galecki@icm.edu.pl
23.04.2025

j.galecki@icm.edu.pl

Presenter bio

Member of the Application and User Support team at ICM

Research relates to application of the finite element method in
fluid mechanics

Experience with MPI in the context of physics simulation

One of the maintainers of the ICM HPC software stack

1

Resources

The MPI Standard https://www.mpi-forum.org/docs/

Implementation documentation, e.g.,
https://docs.open-mpi.org/en/v5.0.x/index.html

Gropp W., Lusk E., Skjellum A. 2014. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. The MIT
Press.

2

https://www.mpi-forum.org/docs/
https://docs.open-mpi.org/en/v5.0.x/index.html

Agenda

Types of CPU parallelism

What is MPI?

Basic definitions

Anatomy of a message

Point-to-point communication

Collective communication

Non-blocking communication

Practical considerations

Exercises
3

Types of (CPU) parallelism

Type of parallelism Means of access Limit

Vector instructions (SIMD) Compiler, intrinsics Vector size (512b on modern CPUs)

Instruction-Level Parallelism Compiler Number of execution units

SMT (hyperthreading) Code, OS, IPC Number of logical/physical cores (2)

Multithreading Code, OS, IPC Number of physical cores

Multiple processors (ccNUMA) - Number of sockets

Multiple machines (nodes) Network communication (MPI) Wallet depth

SIMD – Single Instruction, Multiple Data

SMT – Simultaneous Multi-Threading

OS – Operating System

IPC – Inter-process communication

ccNUMA – cache-coherent Non-Uniform Memory Access

4

Shared vs distributed memory

vs.RAMCPU CPU

CPU

CPU

Ne
tw

or
k

CPU

CPU

CPU

CPU

RAM

RAM

RAM

RAM

5

Shared vs distributed memory

{thread} ⊆ {processes} ⊂ system

Shared memory:

• Threads share the virtual address space – no cost to sharing data

• Issues around synchronization – data races

• Several programming models: OpenMP, TBB, pthreads, ...

• Inherently limited scalability

Distributed memory:

• Processes have separate address spaces – communication is needed to share
data

• Ubiquitous standard in HPC: MPI

• Scalability is limited only by the size of your cluster

6

MPI

Message Passing Interface

Standard set by the MPI Forum

Native interface in Fortran, C, C++

Current version: 4.1 (Nov 2023)
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf

Competing implementations:

• MPICH – https://www.mpich.org/
• OpenMPI – http://www.open-mpi.org/
• Others...

Cornerstone of the HPC software stack

7

https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpich.org/
http://www.open-mpi.org/

MPI programming model

SPMD – Single Program Multiple Data:

• We execute the launcher, passing the relevant executable, number of instances
we wish to launch n, program arguments, etc...

• Launcher launches n sub-processes, each executing the specified binary

• Sub-processes carry out the actual computation, communicating via the parent
process

MPMD also supported, but not very popular

Assumptions:

• Every process has a private virtual address space, backed by a physical address
space which may or may not be shared with other processes (abstraction)

• Every exchange of data between the processes is explicit

8

Model SPMD

MPI communication

proc.exe
0

proc.exe
1

proc.exe
2

proc.exe
3

Data Data Data Data

9

Basic concepts

Communicator – abstraction describing a set of processes and
their associated communication context

Rank – unique ID of a process within a communicator. Rank IDs
are always consecutive natural numbers, starting at 0.

2 communicators available by default:

• MPI_COMM_SELF – communicator containing only the
current process

• MPI_COMM_WORLD – communicator containing all
processes launched by the launcher

We can create new communicators in order to de-conflict
messages (e.g. library vs user)

10

Initialization and finalization

The MPI C API declaration resides in mpi.h

To initialize MPI we must first call:
int MPI_Init(int* argc, char*** argv);

To finalize the session we must call:
int MPI_Finalize();

No calls can be made outside of this envelope (with limited
exceptions)

11

Communicator size and rank

To get the size of the communicator:

int size;
int err_code = MPI_Comm_size(MPI_COMM_WORLD, &size);

To get the rank of the current process:

int my_rank;
int err_code = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

12

Message description

In the point-to-point model, processes simply exchange messages.
The message contents are described by:

• Pointer to the data array ([const] void*)

• Number of elements to send/receive (int)

• Type of the data (MPI_Datatype)

Number of elementsArray start

13

Data types

MPI describes data types using dynamic handles of type
MPI_Datatype

This lets the user define their own data types (outside the
scope of this presentation)

Built-in integer and floating-point types are predefined, e.g.:

• char – MPI_CHAR
• int – MPI_INT
• double – MPI_DOUBLE

C++ libraries commonly use type deduction to avoid having to
manually specify this argument

14

P2P communication

P2P messages are addressed using the following elements:

• Communicator (context)
• Sender (rank)
• Recipient (rank)
• Tag (user-provided ID used to differentiate messages)

In order for a message to be received, these descriptors must
match

Wildcards: MPI_ANY_SOURCE, MPI_ANY_TAG

15

P2P communication

Send:
int MPI_Send(const void* buf, int size, MPI_Datatype type,

int dest, int tag, MPI_Comm comm);

const double buf[3] = {3.14, 42., 2.71};
const int dest = 1, tag = 0;
int err = MPI_Send(buf, 3, MPI_DOUBLE, dest, tag, MPI_COMM_WORLD);

Receive:
int MPI_Recv(void* buf, int size, MPI_Datatype type,

int src, int tag, MPI_Comm comm, MPI_Status* status);

double buf[3];
const int src = 0, tag = 0;
int err = MPI_Recv(buf, 3, MPI_DOUBLE, src, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

16

MPI_Status, MPI_Probe

The last argument of MPI_Recv (type MPI_Status) provides us
with additional information about the received data. e.g., the number
of elements which were actually received (MPI_Get_count).

MPI_Probe lets us examine an incoming message before actually
receiving it:
MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status* status);

If we wish, we can ignore the status by passing
MPI_STATUS_IGNORE

17

How exactly is MPI sending my message?

2 types of behavior:

• Synchronous – data is send directly from the user-provided buffer

• Buffered – data is first copied to an intermediate buffer

Mode MPI function Behavior

Synchronous MPI_Ssend Fully synchronous

Buffered MPI_Bsend Buffered (requires configuring a buffer)

Standard MPI_Send Implementation decides

Ready send MPI_Rsend Must be called after the corresponding receive

All of these calls are blocking, meaning control will return to the caller only after the
message buffer is no longer being used by MPI

18

Collective communication

Collective communication – all ranks in the communicator participate

Describes a global pattern of data exchange

Examples:

• Barrier

• Broadcast

• Gather, AllGather

• Scatter

• All-to-all

• Reduce, AllReduce

• Scan

19

Barrier

Blocks the caller until all ranks reach the barrier

Should be used sparingly

Useful e.g. for debugging, profiling, I/O sync
int MPI_Barrier(MPI_Comm comm);

time

P1 Bar.

P2 Bar.

20

Broadcast

Broadcast – one rank sends the same data to all other ranks
int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm);

abc

abc abc abc abc abc

21

Gather

Gather – one rank gathers data from other ranks
int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm);

a b c d e

a b abcde d e

22

AllGather

AllGather = Gather + Broadcast
int MPI_Allgather(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm);

a b c d e

abcde abcde abcde abcde abcde

23

Scatter

Scatter – one rank distributes its data among other ranks
int MPI_Scatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm);

abcde

a b c d e

24

All-to-all

All-to-all – all ranks distribute data among other ranks
int MPI_Alltoall(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm);

1 2 3 4 5 a b c d e A B C D E i ii iii iv v I II III IV V

1 a A i I 2 b B ii II 3 c C iii III 4 d D iv IV 5 e E v V

25

Reduce

Reduce – Global reduction (sum, max, etc.)
int MPI_Reduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm);

1 2 3 4 5

15

26

Types of reductions

Define our own or use the presets:

Nazwa Znaczenie

MPI_MAX max

MPI_MIN min

MPI_SUM sum

MPI_PROD product

MPI_LAND logical and

MPI_BAND binary and

MPI_LOR

MPI_BOR

MPI_LXOR

MPI_BXOR

MPI_MAXLOC max value and location

MPI_MINLOC min value and location

27

AllReduce

AllReduce = Reduce + Broadcast
int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

1 2 3 4 5

15 15 15 15 15

28

Scan

int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

a b c d e

a ab abc abcd abcde

29

Non-blocking communication

Control returns to the caller immediately after invoking the function

Communication happens “in the background”

Communication request handle used to query the status

Testing – check for completion

Waiting – block until complete

The buffer can only be reclaimed after completion – user-side
memory management

Non-blocking communication is foundational for scalability –
communication and computation overlap

30

Non-blocking communication – P2P

Send:
int MPI_Isend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request* request);

Receive:
int MPI_Irecv(void* buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request* request)

Other modes available: MPI_Ibsend, MPI_Issend, etc.

Non-blocking collective communication also possible: MPI_Ibcast,

MPI_Iscatter, etc.

31

MPI_Request

MPI_Request – abstraction representing the handle to the non-blocking
communication

Testing:
int MPI_Test(MPI_Request* request, int* flag, MPI_Status* status);

Waiting:
int MPI_Wait(MPI_Request* request, MPI_Status* status);

Cancellation*:
int MPI_Cancel(MPI_Request* request);

A data leak occurs if MPI_Request is not handled in one of these ways

32

MPI_Request

Utilities for handling arrays of requests

Test:
int MPI_Testall(int count, MPI_Request array_of_requests[],

int* flag, MPI_Status array_of_statuses[]);

int MPI_Testany(int count, MPI_Request array_of_requests[],
int* index, int* flag, MPI_Status* status);

int MPI_Testsome(int incount, MPI_Request array_of_requests[],
int* outcount, int array_of_indices[],
MPI_Status array_of_statuses[]);

Wait:
int MPI_Waitall(int count, MPI_Request array_of_requests[],

MPI_Status* array_of_statuses);

int MPI_Waitany(int count, MPI_Request array_of_requests[],
int* index, MPI_Status* status);

int MPI_Waitsome(int incount, MPI_Request array_of_requests[],
int* outcount, int array_of_indices[],
MPI_Status array_of_statuses[]);

33

Compiling MPI applications

Implementations supply compiler wrappers responsible for
setting any flags and linkage of shared objects

• mpifort / mpif77 / mpif90
• mpicc
• mpicxx / mpic++*

CMake support: find_package(MPI) from the FindMPI
module

34

Launching MPI applications

Launcher: mpiexec / mpirun
mpiexec -n 4 my_awesome_app

Various options available for setting hardware bindings, etc.

On clusters resources are managed by scheduling systems

MPI natively integrates with slurm – ranks map directly to tasks

Resource requirements can be specified via sbatch options,
in the job script we simply call
srun my_awesome_app

35

MPI + multithreading

MPI offers support for multithreading within MPI processes

4 modes available:

• Single – process only has 1 thread

• Funneled – MPI calls may only occur from the main thread

• Serialized – MPI calls will not occur concurrently

• Multiple – MPI calls may occur concurrently (MPI responsible for sync)

When multithreading, MPI should be initialized using MPI_Init_thread:

int MPI_Init_thread(int* argc, char*** argv,
int required, int* provided);

36

MPI + CUDA

As we’ve described it so far, using MPI with CUDA would require
the following steps:

1. Copy data from device to host memory
2. Send data to the destination process
3. On the destination process, copy the data from host to
device memory

Server GPUs have networking capabilities, ideally we’d like to
send data directly between GPUs

Since the introduction of UVA, we can achieve this simply by
passing device memory pointers to MPI calls.

37

C++ wrappers for MPI

Simpler interface thanks to classes

Automatic type deduction for built-in types

Request lifetime management via RAII

Bundling requests and data

Leverage C++20 ranges for ease and safety

Comm comm{MPI_COMM_WORLD};
int rank = comm.rank();
auto send_data = std::vector{1., 2., 3.};
auto recv_data = std::array<double, 3>{};
int dest = 1, src = 2, tag = 42;
auto send_request = comm.send(send_data, dest, tag);
auto recv_request = comm.recv(recv_data, src, tag);
send_request.wait();
recv_request.wait();

38

Summary

Distributed memory programming is the most scalable approach to
parallelism

MPI can be used to exchange data between processes which potentially
reside on different physical machines

MPI offers many abstractions, such as collective and nonblocking
communication which, facilitate correctness and performance

MPI integrates well with slurm

MPI does not preclude – and in fact enables – other types of parallelism

39

Further topics

Virtual communicator topologies

Distributed I/O

One-sided communication (RMA)

Defining data types and operations

40

Q & A

Thanks for listening!

Feel free to reach out at jgalecki@icm.edu.pl

41

jgalecki@icm.edu.pl

Exercises

1. Hello MPI

Write an MPI program which prints the rank of the current
process and the number of launched processes.

Is the order of the messages deterministic?

If not, how can we synchronize the printing operation?

42

2. Distributed inner product

The inner (scalar) product of two vectors x, y ∈ RN is given by:

x · y =
N∑
i=1

xi · yi

Write an MPI program which computes the inner product of 2 vectors.
Assume that both vectors have the same distribution among the ranks.

Does exact way the vectors are distributed among the ranks affect the
solution?

What is the simplest way to distribute vectors among ranks (local-global
mapping)?

43

3. Halo exchange

Domain decomposition. In scientific simulations, the computational
grid is distributed among MPI ranks. Computation is mostly local to
each rank. Interface data must be communicated – this is called a
halo exchange.

44

3. Halo exchange

On each rank, the vector of unknowns consists of 2 sections: owned and
shared entries. Typically, the shared section is sorted by the owning
partition.

x1 =

x11
...

xn1

x12
...

xm2

x13
...

xl3

45

3. Halo exchange

Write a program which performs a halo exchange for a grid with the
following topology:

• There are NR ranks

• Each rank owns NL cells

• Rank i owns cells i · NL through (i+ 1) · NL − 1

• Rank i shares its last cell with rank i+ 1mod NR

This setup corresponds to a 1D periodic domain, decomposed
equally among the ranks

46

	Exercises

